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Abstract

The Vision Transformer (ViT) is a relatively new development in the field of
computer vision which has proven to be capable of significant performance im-
provements over the traditional convolutional neural network (CNN) for tasks
such as image classification and semantic segmentation. One task which has not
seen as much research focus as others is unsupervised image clustering, which
attempts to group images into semantically meaningful clusters in the absence
of ground-truth labels. Most methods for image clustering have utilized CNNs,
autoencoders, and generative models to learn features representative of the data.
In this work, we leverage the performance of ViT and an end-to-end contrastive
learning method to learn feature representations and cluster assignments simultane-
ously. Specifically, two randomly transformed versions of each image in a batch
are passed through a shared ViT backbone, then two independent projection heads
take the ViT encodings of these images and perform both instance-level contrastive
learning and global cluster learning. This paper demonstrates that our approach,
which we call Vision Transformer for Image Clustering (ViT-IC), is able to achieve
comparable results to state-of-the-art methods on several image datasets based on
metrics commonly used to evaluate image clusterings.

1 Introduction

The clustering task is one of the most important in the unsupervised learning domain. Without
labels for objects in a dataset, organizing the data into distinct groups of similar objects can provide
valuable insights for data analysis. While many of the methods which already exist for clustering
data demonstrate acceptable practical results [1], [2], most of these algorithms struggle on high-
dimensional data, such as image datasets, because they fail to find sufficient representations of the data.
To address this issue, deep clustering [3] utilizes neural networks to extract representative information
from data to facilitate downstream clustering. Furthermore, interest has shifted to deep clustering in
an end-to-end fashion, for methods which alternate between separate stages of representation learning
and clustering tend to suffer from error accumulation and suboptimal clustering performance [4].

Coincidentally, the Vision Transformer (ViT) [5] has become a promising alternative to the convolu-
tional neural network (CNN) [6] in many computer vision tasks. While the CNN is very effective
in capturing feature locality, ViT is able to capture global dependencies through a multi-head self-
attention mechanism [7]. In ViT, an image is split into a sequence of small patches and then fed
through a Transformer encoder [7] for representation learning. As a result of its demonstrated success
in the field, Transformer-based architectures have become predominant for a variety of vision tasks
like image classification [5] and semantic segmentation [8].

While some research works have recently looked into the use of ViT for self-supervised learning,
none have thoroughly investigated ViT for the image clustering task. We propose Vision Transformer
for Image Clustering (ViT-IC), a novel deep clustering method for performing image clustering with
ViT. By drawing on recent developments in contrastive learning [9], ViT-IC is able to effectively
learn instance and cluster feature representations on image datasets end-to-end.
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2 Related work

Deep clustering methods expand on traditional machine learning clustering approaches, like K-means
[1] and spectral clustering (SC) [2], which only focus on local pixel-level information but ignore high-
level and semantic information [4]. DeepCluster [10] proposes an iterative process to cluster CNN
deep features and use K-means cluster assignments as pseudo-labels to learn the CNN parameters.
Deep Embedded Clustering (DEC) [11] utilizes a stacked autoencoder which drops the decoder after
training and uses the features extracted by the encoder to serve as input for a clustering module. Deep
convolutional generative adversarial network (DCGAN) [12] introduces a class of CNNs which can
be trained in a manner similar to generative models and learn a hierarchy of representations. SimCLR
[13] demonstrates the importance of multiple data augmentations for constructing the pairs used in
contrastive learning.

ViT is also beginning to emerge in self-supervised contrastive learning works. Notably, DINO
[14] describes an approach called self-distillation with no labels that combines self-supervision
and knowledge distillation, while also explores the properties of self-supervised ViT compared
to supervised ViT. Momentum Contrast (MoCo) v3 [15] demonstrates using ViT in the MoCo
framework, where momentum contrastive learning with encoders and a queue for saving negative
samples are employed.

3 ViT-IC

In this section, we describe the details of the proposed framework as shown in Figure 1. Section 3.1
first explains the ViT backbone and the projection heads we use. Then, Section 3.2 briefly provides
the procedures used to augment the data for training and evaluating ViT-IC. Lastly, Section 3.3
describes the contrastive loss functions used to train ViT-IC.

Figure 1: Vision Transformer for Image Clustering (ViT-IC).

3.1 Vision Transformer

ViT-IC implements a vanilla version of ViT [5] with a convolutional stem [16] as the backbone
for feature extraction. While a patchify stem performing 16× 16 convolutions with a stride of 16
followed by a flattening of the patches is traditionally used to create the input sequence of feature
embeddings in ViT, replacing the patchify stem with a convolutional stem can help make optimization
more stable to choices of optimizer, dataset, and other hyperparameters while improving overall
performance [16]. The convolutional stem consists of a small series of stride-2 3× 3 convolutions
and batch normalization layers followed by a 1× 1 convolution to match the Transformer encoder
dimension. The use of small and overlapping convolutions helps the model capture fine-grained
local features and associations compared to the patchify stem. In addition, because ViT models
global relations in the input sequence of feature embeddings but is permutation-invariant, sine-cosine
positional encodings [7] are added to the input sequence of the self-attention layers to incorporate
information regarding the relative positions of the embeddings.

Directly after ViT, the ViT encodings get passed to instance-level and cluster-level projection heads
[13]. Projection heads are necessary to avoid information loss induced by the contrastive loss when
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using the feature representations from ViT directly [13]. The projection heads we use are small neural
networks which map the feature representations to a space where contrastive loss is applied.

3.2 Data transformations

For each training image, two data transformations composed of stochastic augmentations ResizedCrop,
ColorJitter, Grayscale, GaussianBlur, HorizontalFlip, and Solarize are used to produce two correlated
images similar to the setting in SimCLR [13]. That is, for image x, we obtain images xa = T a(x)
and xb = T b(x) where T a, T b ∼ T . These transformed images are what we pass to our model during
training as shown in Figure 1. The purpose of performing these transformations is so we can employ
a contrastive learning strategy that creates positive and negative pairs for the model to discriminate
between [17]. During evaluation, the image is only resized to the model input size.

3.3 Loss functions

ViT-IC performs both instance-level and cluster-level contrastive learning through the two independent
projection heads. Contrastive learning aims to learn a low-dimensional representation of the data
which maximizes the similarities of positive pairs and minimizes the similarities of negative pairs.
We adopt the same loss functions used by Contrastive Clustering (CC) [9] and discuss them in the
following sections.

3.3.1 Instance-level contrastive loss

To measure pairwise similarity of two equally-sized vectors, we use cosine similarity. The cosine
similarity is given by the equation

S(α, β) =
α⊤β

||α|| · ||β||
(1)

Suppose we have a mini-batch of N images resulting in a total of 2N augmented images, that is
I = {xa

1 , ..., x
a
N , xb

1, ..., x
b
N}. For a single image xa

i , this set contains one positive pair (with xb
i ) and

2N − 2 negative pairs. Let zai and zbi be the instance-level feature representations produced by the
instance projection head for image augmentations xa

i and xb
i respectively. To distinguish xa

i from
other images that would form a negative pairing, we use InfoNCE loss [18] and get the instance loss
of xa

i :

lai = − log
exp (S(zai , z

b
i )/τI)∑N

j=1[exp (S(z
a
i , z

a
j )/τI) + exp (S(zai , z

b
j)/τI)]

(2)

where τI is the instance-level temperature parameter, and lbi defined similarly. The instance-level
contrastive loss for the entire mini-batch is then defined as the average loss of all augmented images
in the batch, that is

Linstance =
1

2N

N∑
i=1

(lai + lbi ) (3)

3.3.2 Cluster-level contrastive loss

The C-dimensional feature vector that the cluster projection head outputs for a sample can be thought
as a soft label representing the probabilities of it belonging to each of the C clusters, i.e., the i-th entry
of the vector corresponds to the probability that the sample belongs to the i-th cluster. In this sense,
we can define Y a, Y b ∈ RN×C to be the outputs of the cluster projection head for a mini-batch of
size N under T a and T b respectively. Furthermore, let yai and ybi be the i-th column of Y a and Y b.
These columns form representations of the C clusters in the mini-batch and can be used to form
positive and negative pairs. With the set of cluster representations U = {ya1 , ..., yaC , yb1, ..., ybC}, we
form for representation yai a positive pair with ybi and make the remaining 2C − 2 pairs negative. We
again use InfoNCE loss to get the cluster loss of cluster yai :

l̂ai = − log
exp (S(yai , y

b
i )/τC)∑C

j=1[exp (S(y
a
i , y

a
j )/τC) + exp (S(yai , y

b
j)/τC)]

(4)
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where τC is the cluster-level temperature parameter, and l̂bi similar. The cluster-level contrastive loss
of the entire mini-batch for the C clusters is then given by

Lcluster =
1

2C

C∑
i=1

(l̂ai + l̂bi )−H(Y ) (5)

where H(Y ) =
∑C

i=1[P (yai ) logP (yai ) + P (ybi ) logP (ybi )] is the entropy of the cluster assignment
probabilities P (yki ) =

∑N
j=1 Y

k
ji / ||Y k||1, k ∈ {a, b} in the mini-batch. This entropy term is needed

to avoid the trivial solution where most samples are assigned to the same cluster.

3.3.3 Overall loss

To jointly optimize the instance-level and cluster-level contrastive loss functions, we take the simple
addition of the loss functions and obtain an overall multi-task loss function, i.e.,

L = Linstance + Lcluster (6)

4 Experiments

We evaluate ViT-IC on three image datasets and compare its performance to other state-of-the-art
clustering approaches found in the literature. We first introduce the configuration that we use for
ViT-IC and the benchmarks that we use to assess its performance before presenting our results.

4.1 Implementation details

Our ViT model has the same configuration as ViT-Small [19] with a few modifications. Because
of resource constraints, we simplify the model to have fewer parameters. There are instead 8
Transformer blocks, each with an embedding dimension of 288 and 12 attention heads. Our ViT
also uses 128× 128 inputs compared to the standard 224× 224. The convolutional stem includes
four 3 × 3 convolutions of stride 2 followed by a 1 × 1 convolution. Both instance and cluster
projection heads contain three fully-connected layers with 1344 hidden units each, and the output
feature dimension of the instance projection head is 128. The instance-level temperature parameter τI
is set to 0.5, and the cluster-level temperature parameter τC is set to 1.0. We use the Adam optimizer
with a constant learning rate of 0.001. We train ViT-IC using this configuration with a batch size of
256 for 1000 epochs.

4.2 Datasets

The datasets we use in our experiments are CIFAR-10 [20], CIFAR-100 [20], and STL-10 [21].
CIFAR-10 and CIFAR-100 are image datasets prevalent in the computer vision community. In the
case of CIFAR-100, we use the 20 superclasses as our labels rather than the 100 fine labels. The
STL-10 dataset contains 100,000 unlabeled images in addition to 13,000 labeled images of 10 classes
from ImageNet [22] and is often used in unsupervised learning. We train ViT-IC on these datasets
with both labeled and unlabeled images but evaluate only with the labeled images.

4.3 State-of-the-art methods

The clustering methods we compare ViT-IC to include four traditional clustering methods and six
deep clustering methods that are representative of the state-of-the-art for image clustering. The
traditional clustering methods are K-means [1], spectral clustering (SC) [2], agglomerative clustering
(AC) [23], and non-negative matrix factorization (NMF) [24]. The deep clustering methods are deep
convolutional generative adversarial network (DCGAN) [12], variational autoencoder (VAE) [25],
Deep Embedded Clustering (DEC) [11], PartItion Confidence mAximisation (PICA) [26], Semantic
Clustering by Adopting Nearest neighbors (SCAN) [27], and Contrastive Clustering (CC) [9]. The
results for SC, NMF, DCGAN, and VAE are obtained by performing K-means clustering on the
extracted features. These methods were evaluated using inputs of size 224× 224 compared to ours
which only takes 128× 128 images.
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Table 1: Comparison of ViT-IC to other clustering methods. Higher metric values indicate better
clustering performance.

Dataset CIFAR-10 CIFAR-100 STL-10

Metric NMI ARI ACC NMI ARI ACC NMI ARI ACC

K-means 0.087 0.049 0.229 0.084 0.028 0.130 0.125 0.061 0.192
SC 0.103 0.085 0.247 0.090 0.022 0.136 0.098 0.048 0.159
AC 0.105 0.065 0.228 0.098 0.034 0.138 0.239 0.140 0.332
NMF 0.081 0.034 0.190 0.079 0.026 0.118 0.096 0.046 0.180
DCGAN 0.265 0.176 0.315 0.120 0.045 0.151 0.210 0.139 0.298
VAE 0.245 0.167 0.291 0.108 0.040 0.152 0.200 0.146 0.282
DEC 0.257 0.161 0.301 0.136 0.050 0.185 0.276 0.186 0.359
PICA 0.591 0.512 0.696 0.310 0.171 0.337 0.611 0.531 0.713
SCAN 0.712 0.665 0.818 0.441 0.267 0.422 0.654 0.590 0.755
CC 0.705 0.637 0.790 0.431 0.266 0.429 0.764 0.726 0.850

ViT-IC 0.495 0.363 0.562 0.362 0.212 0.357 0.510 0.400 0.567

4.4 Metrics

To compare the clustering performance of ViT-IC against these algorithms, we utilize in our exper-
iments the normalized mutual information (NMI) [28], the adjusted Rand index (ARI) [29], and
the cluster accuracy (ACC) [30] metrics. These metrics are standard and widely used for the image
clustering task. All metric scores fall between 0.0 and 1.0, where a score close to 0.0 implies the
clusterings largely disagree and a score of 1.0 implies identical clusterings. We treat the output
from each clustering approach as one set of clusterings and the ground-truth labels as another set of
clusterings for calculating the scores. Note that the metric scores are independent of the actual cluster
label values assigned by the methods.

4.5 Results

Table 1 summarizes the performance of the clustering methods on the benchmark datasets with
the three metrics. ViT-IC is able to outperform seven of the ten baselines by a large margin on all
three datasets. Particularly, the metric scores that ViT-IC achieve exceed that of the best-performing
among these baselines, DCGAN on CIFAR-10 and DEC on CIFAR-100 and STL-10, by more than
or nearly twofold. However, ViT-IC does not perform better than SCAN or CC on any benchmark,
and performs better than PICA on CIFAR-100 only. On CIFAR-10, ViT-IC obtains an NMI of 0.495
while the method that performs directly better, PICA, sees a relative gain of 19.4% with an NMI
of 0.591. On CIFAR-100, the directly better method to ViT-IC, CC, achieves a 19.1% relative gain
over ViT-IC with an NMI of 0.431 compared to ViT-IC with an NMI of 0.362. On STL-10, ViT-IC
scores an NMI of 0.510 and PICA shows a 19.8% relative gain over ViT-IC with an NMI of 0.611.
Similar observations in terms of ARI and ACC can be seen. However, because of the trade-off we
make which leaves ViT-IC with fewer parameters and a smaller input size, ViT-IC can likely achieve
performance that matches or even exceeds these methods if the model was configured to be larger.

(a) CIFAR-10 (b) CIFAR-100 (c) STL-10

Figure 2: The t-SNE visualizations of ViT-IC instance feature representations on the three datasets.
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Figure 3: Image clusters produced by ViT-IC on CIFAR-10. Each row represents a different cluster.

By performing contrastive learning on both instance-level and cluster-level simultaneously, ViT-IC
should learn discriminative features which form separate clusters. The t-SNE [31] visualizations of
the instance features and cluster assignments after training on each dataset are shown in Figure 2,
where different colors represent different clusters assigned by the cluster projection head. Particularly
in the cases of CIFAR-10 and STL-10, some cluster separation can be observed. We can also see for
all datasets that clusters have roughly the same number of features assigned to them as a result of the
entropy term in the cluster-level contrastive loss.

Figure 3 shows a visualization of the clusters computed by ViT-IC on CIFAR-10. For each cluster,
a random sample of 10 images is taken and displayed in a row with the ground-truth labels above
them. We can see that images in the same cluster appear to contain similar visual features, and that
the ground-truth labels are semantically close. Especially for the top and bottom rows in the figure,
the labels are almost homogeneous. The visualizations on CIFAR-100 and STL-10 can be found in
Appendix A.

5 Conclusion

In this work, we describe an unsupervised image clustering method with a ViT backbone that can
group images into clusters that appear semantically similar. Vision Transformer for Image Clustering
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(ViT-IC) performs contrastive learning at both the instance-level and cluster-level simultaneously.
By passing two stochastically transformed versions of images through a shared ViT backbone, then
passing the ViT encodings to instance and cluster projection heads, ViT-IC optimizes a multi-task
contrastive loss to learn discriminative feature representations and cluster assignments. We show
that ViT-IC is able to deliver results that are comparable with state-of-the-art approaches on CIFAR-
10, CIFAR-100, and STL-10 datasets based on metrics that are standard for evaluating clustering
methods.
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A Appendix

As supplementary material, we include the visualizations of the image clusters produced by ViT-IC
on CIFAR-100 [20] and STL-10 [21].
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Figure 4: Image clusters produced by ViT-IC on CIFAR-100.
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Figure 5: Image clusters produced by ViT-IC on STL-10.
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